11111

COURSE INTRODUCTION AND APPLICATION INFORMATION


ce.cs.ieu.edu.tr

Course Name
Code
Semester
Theory
(hour/week)
Application/Lab
(hour/week)
Local Credits
ECTS
Fall/Spring
Prerequisites
 ISE 317To succeed (To get a grade of at least DD)
Course Language
Course Type
Elective
Course Level
-
Mode of Delivery -
Teaching Methods and Techniques of the Course
Course Coordinator
Course Lecturer(s)
Assistant(s)
Course Objectives
Learning Outcomes The students who succeeded in this course;
  • Will be able to design experiments in discrete event simulation
  • Will be able to make sensitivity analysis in discrete event simulation
  • Will be able to use simulation optimization tools
  • Will be able to model detailed manufacturing and service operations
  • Will be able to model inventory systems
  • Will be able to model material handling systems
Course Description

 



Course Category

Core Courses
Major Area Courses
X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

 

WEEKLY SUBJECTS AND RELATED PREPARATION STUDIES

Week Subjects Required Materials
1 Review of Basic Concepts in Simulation Modeling Course Handouts and WSC Proceedings available online at http://www.wintersim.org/
2 Simulation Examples in Spreadsheets Course Handouts and WSC Proceedings available online at http://www.wintersim.org/
3 Simulation Modelling of a Single-Server Queue in C Programming Language Course Handouts and WSC Proceedings available online at http://www.wintersim.org/
4 Modeling Detailed Operations – I : Simulation modeling using data interchange Course Handouts and WSC Proceedings available online at http://www.wintersim.org/
5 Modeling Detailed Operations – II : Modeling with loops and submodels Course Handouts and WSC Proceedings available online at http://www.wintersim.org/
6 Modeling Detailed Operations – III : Modeling packaging operations; batching, separating Course Handouts and WSC Proceedings available online at http://www.wintersim.org/
7 Design of Simulation Experiments Course Handouts and WSC Proceedings available online at http://www.wintersim.org/
8 Sensitivity Analysis and Simulation Optimization Course Handouts and WSC Proceedings available online at http://www.wintersim.org/
9 Modeling Reneging and Jockeying in Queuing Systems Course Handouts and WSC Proceedings available online at http://www.wintersim.org/
10 Modeling Inventory Systems : (r,Q) and (s,S) Inventory Policies Course Handouts and WSC Proceedings available online at http://www.wintersim.org/
11 Simulation of Material Handling Systems I : Unconstrained Transfer in Network of Queuing Systems Course Handouts and WSC Proceedings available online at http://www.wintersim.org/
12 Simulation of Material Handling Systems II : Constrained Transfer with Resources Course Handouts and WSC Proceedings available online at http://www.wintersim.org/
13 Simulation of Material Handling Systems III : Constrained Transfer with Free Path Transporters Course Handouts and WSC Proceedings available online at http://www.informscs.org/wscpapers.html
14 Simulation of Material Handling Systems IV : Constrained Transfer with Guided Path Transporters Course Handouts and WSC Proceedings available online at http://www.wintersim.org/
15 General Review, Discussion and Evaluation Course Handouts and WSC Proceedings available online at http://www.wintersim.org/
16 Review
Course Notes/Textbooks Banks, J., Carson II, J. S., Nelson, L. B., and Nicol M. D., DiscreteEvent System Simulation, Prentice Hall, 2010. Kelton, W.D., Sadowski, R. P. and Sadowski, D.A., Simulation with ARENA, McGraw-Hill, Inc., 2010.
Suggested Readings/Materials Handbook of Simulation, Principles, Methodology, Advances, Applications, and Practice, edited by Jerry Banks, John Wiley and Sons, Inc. 1998. Manul D. Rossetti, Simulation Modeling and ARENA, John Wiley and Sons, 2010. Tayfur Altıok, Benjamin Melamed, Simulation Modeling and Analysis with ARENA, Elsevier, 2007. Simulation Modeling Handbook a Practical Approach, Christopher A. Chung, CRC Press, 2003. Pegden, D.C., Shannon, E.R. and Sadowski P.R., Introduction to Simulation Using SIMAN, McGraw-Hill, Inc., 1995. WSC Proceedings, http://www.informscs.org/wscpapers.html. Supplementary Course Handouts

 

EVALUATION SYSTEM

Semester Activities Number Weigthing
Participation
Laboratory / Application
Field Work
Quizzes / Studio Critiques
1
20
Portfolio
Homework / Assignments
1
30
Presentation / Jury
Project
1
30
Seminar / Workshop
Oral Exam
Midterm
Final Exam
1
20
Total

Weighting of Semester Activities on the Final Grade
80
Weighting of End-of-Semester Activities on the Final Grade
20
Total

ECTS / WORKLOAD TABLE

Semester Activities Number Duration (Hours) Workload
Course Hours
(Including exam week: 16 x total hours)
16
2
32
Laboratory / Application Hours
(Including exam week: 16 x total hours)
16
2
Study Hours Out of Class
16
1
Field Work
Quizzes / Studio Critiques
1
6
Portfolio
Homework / Assignments
1
10
Presentation / Jury
Project
1
10
Seminar / Workshop
Oral Exam
Midterms
Final Exams
1
16
    Total
122

 

COURSE LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS RELATIONSHIP

#
Program Competencies/Outcomes
* Contribution Level
1
2
3
4
5
1

Adequate knowledge in Mathematics, Science and Computer Engineering; ability to use theoretical and applied information in these areas to model and solve Computer Engineering problems

X
2

Ability to identify, define, formulate, and solve complex Computer Engineering problems; ability to select and apply proper analysis and modeling methods for this purpose

X
3

Ability to design a complex computer based system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern design methods for this purpose

X
4

Ability to devise, select, and use modern techniques and tools needed for Computer Engineering practice

X
5

Ability to design and conduct experiments, gather data, analyze and interpret results for investigating Computer Engineering problems

X
6

Ability to work efficiently in Computer Engineering disciplinary and multi-disciplinary teams; ability to work individually

7

Ability to communicate effectively in Turkish, both orally and in writing; knowledge of a minimum of two foreign languages

8

Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself

9

Awareness of professional and ethical responsibility

10

Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development

11

Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of Computer Engineering solutions

*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest

 

İzmir Ekonomi Üniversitesi | Sakarya Caddesi No:156, 35330 Balçova - İZMİR Tel: +90 232 279 25 25 | webmaster@ieu.edu.tr | YBS 2010